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 انخلاصة:

أسبحخذيث ئشَةبة اناُاصبش انًحبذدح  ىٌ عهبً قب  حبجى دساسة خصائص الاهحضاص نحشكُب  نُباط ئبائشح َحفٍ هزا انبحث, 

جًبث  سَاضبُة  حبم كىسبُهة (Ansys v9.0)نصُاغة وجحهُم الاهحضاص انحش  جى جُفُبز انبحبث واسبحخشال انُحبائأ  خدسبحخذاو 

ويبذي جدثُشهبا عهبً انحبشدد انيبُابٍ  و وصاوَبة يبُلاٌ انشب  ¸ ؤثشح )يثم َسبة انش , يىقع انش دساسة خاض اناُاصش انً

شب  ونكبٍ ظهشت انُحائأ خدٌ قُى انحشدد انيبُاٍ جحدثش خشكم كبُبش عُبذ ونبىد ان أ نهجُاط   (Mode shapeوانشكم انًُيٍ

نهكشب  عبٍ يىقبع و قًُبة جًثبم وسبُهة يًحباصح  ًيبٍَحبائأ انشبكم انُ انشب  وقًُحب    خًُُبالا َايٍ اَة اَيباعات عٍ يىقع 

انش  عهً ئىل انجُاط  كًا جى دساسة جدثُش يُلاٌ صاوَة انش  عهبً جحذَبذ يىقبع انشب  حُبث أظهبشت انُحبائأ  ونبىد خيبد 

عهبً يحبىس انجُباط  أضبافة انبً رنبو, أٌ ونبىد  حانة كىٌ صاوَة انًُلاٌ غُش عًىدَبة فٍ جحذَذ يىقع انش  قهُم َسبُاً فٍ

    قذ َؤدٌ انً جحىل و أَحةال الأقكال انًُيُ  فًُا خُُها ورنو خالأعحًاد عهً يىقع ويةذاس انش     انش 

 

 

 

Abstract: The present research is concerned with an investigation of the vibration 

characteristics of a cracked wing structure. Finite element method has been used to formulate 

the free vibration analysis. Ansys v9.0 program was used as a mathematical tool in 

implementation the analysis and extract the results. Effect of several parameters such as 

(effect of crack ratio, crack location, and crack inclination angle) on the natural frequencies 

and mode shapes were studied. The results indicate that the natural frequencies are affected in 

the presence of a crack; but it doesn’t give an indication to the crack location. While, using 

mode shape is a powerful tool to detect the crack and its magnitude along the wing’s length. 

The crack inclination angle is investigated to show its effect on the crack identification where 

relatively little error may appear if crack angle wasn’t normal to the wing axis. Also the 

presence of the crack may cause to transform and exchange the modes between each other 

depending on the crack location and its magnitude.       

 

1- Introduction: 

Vibration monitoring has great potential for machine condition monitoring. One form of 

damage that can lead to catastrophic failure if undetected is fatigue cracking of the structural 

elements. A crack in an elastic structural element introduces considerable local flexibility due 

to the strain energy concentration in the vicinity of the crack tip under load. Long ago, this 

effect was recognized and the idea of an equivalent spring, a local compliance, was used to 

quantify in a macroscopic way the relation between the applied load and the strain 

concentration around the tip of the crack (Chondros, 1998) 

 

    One-dimensional beam or box-beam models are widely used as the analytical approach to 

investigate the primary aeroelastic phenomena during the initial design of an aircraft wing. 

The most important variables that affect the aerodynamic forces as well as the wing’s 

dynamics are the flexural deflection along the wingspan and the twisting of camber about a 

spanwise axis. The problem of the understanding of the dynamics of a structure is largely 

depends on the way of various damages undertaken. Since damage (e.g., crack, corrosion, 

creep) in a structure usually changes the mass, stiffness and/or damping distribution of the 

structure either locally or globally, vibration characteristics of the structure may be changed 

so that evaluation of vibration responses may be used to detect the damage. The importance 

and summary on previous research can be found in several survey papers, for instance the one 

by Doebling et al. (1998). 
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   Since the dynamical motion of a real wing structure is difficult by self to understand deeply. 

Therefore an attention is focused here on the theoretical study of simple cracked wing (not 

real) made of aluminum material vibrating in the coupled bending and torsional modes. 

Additional boundary conditions at the crack location can be established such that the wing can 

be replaced with two intact wings connected at the crack location or by subtract the crack 

volume from the whole wing volume. The changes in natural frequencies and mode shapes 

with respect to the crack location, crack ratio, and crack inclination angle were plotted such 

that the crack is detected in the wing using free vibration analysis. . 

2- Crack Detection  

2-1-Based on Changes in Natural Frequencies. 

While natural frequencies are relatively easier and more accurately measured than other 

modal parameters, solving an inverse problem for crack detection based only on changes in 

natural frequencies is not so easy, considering this fact that natural frequency has a global 

nature while damage in most cases is a local phenomenon. However, if the crack is the most 

possible failure mode and no other form of damage exists, detecting the crack by natural 

frequencies is possible, even with the presence of measurement errors. Various structures 

have been targeted directly for real applications in civil infrastructure, aeronautical and 

astronautic systems, ground vehicles, offshore platforms and underground pipelines. 

     Early systematic investigation on damage detection by changes in natural frequencies may 

be attributed to Adams et al. (1978) and Cawley and Adams (1979). Under the premise that 

the change in stiffness is independent of frequency, the ratio of frequency changes in two 

modes is only a function of the damage location. Experiments were carried out on an 

aluminum plate with damage in the form of a rectangular hole. Stubbs and Osegueda (1990a, 

1990b) developed a sensitivity approach for damage detection from changes in natural 

frequencies that is based on the so-called Cawley-Adams criterion. Salawu (1997) provided a 

good review on damage detection by changes in natural frequencies. Although it might not be 

so reliable using natural frequency changes alone for damage identification in some 

infrastructures such as prestressed concrete structures as indicated in the paper, many 

strategies and algorithms were developed to further explore the advantages of natural 

frequencies.  

 

 2-2- Mode Shapes/Curvatures 

Mode shapes are known as the spatial description of the amplitude at each resonance 

frequency. The modal assurance criterion (MAC) and related variations were developed in 

last two decades as a quality assurance indicator to explore the spatial modal information in 

the area of experimental and analytical structural dynamics (Allemang, 2002). West (1984) 

proposed possibly the first systematic investigation on damage detection by using MAC as the 

statistical indicator correlating mode shapes of the damaged and undamaged structure without 

the use of a prior finite element model. Another widely used criterion in damage detection is 

coordinate modal assurance criterion (COMAC) that identifies the coordinates where two sets 

of mode shapes do not agree (Lieven and Ewins, 1988). Examples with a focus primarily on 

MAC and COMAC include Yuen (1985), Natke and Cempel (1997) and Marwala and Hunt 

(2000). Furthermore, Ratcliffe (1997) proposed a method for damage detection based solely 

on mode shapes. The location of damage can be identified from the finite difference 

approximation of a Laplacian operator to the mode shapes. Khan et al. (1999) used a 

continuously scanning laser Doppler vibrometer to monitor the discontinuities in mode shapes 

for detecting cracks and slots. Shi et al. (2000) formulated the multiple damage location 

assurance criterion (MDLAC) with incomplete mode shapes instead of natural frequencies for 

damage detection. 
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    As an alternative in using mode shapes, curvature mode shapes were proposed and 

considered more sensitive to damage than the displacement mode shapes (Pandey et al., 

1991). Lew et al. (1997) compared the method by curvature mode shapes with two other 

modal based methods and found it is reliable for beam-type structures but not suitable for 

truss-type structures. Amaravadi et al. (2001) obtained the curvature mode shapes by 

differentiating mode shapes twice, and then combined a wavelet map with them to improve 

the sensitivity and accuracy for locating damage in a lattice structure and a cantilever beam. 

 

2-3-Based on Damping. 

Although the estimation of damping matrix (mass and stiffness matrices as well) by frequency 

response functions may be used in the detection of the damage in the structure. Frequency 

response functions (FRF) depict in frequency domain the input/output relationship for a 

system, and are extensively used in structural dynamics and system identification to extract 

resonance frequencies, estimate mode shapes and damping coefficients, and verify matrices of 

mass, stiffness and damping. Many damage detection methods based on evaluation of modal 

parameters aforementioned rely on some FRF data, directly or indirectly. 

    Changes in damping, however, may have the ability to detect damage to which 

conventional methods based on changes in natural frequencies and mode shapes are not 

sensitive. Modena et al. (1999) showed that visually undetectable cracks cause negligible 

changes in natural frequencies, but a considerable increase in damping that can be used to 

locate the cracking. 

 

2-4-Time Domain Features 

Modal parameters and FRF data usually involve data reduction and feature extraction during 

the transform of recorded data in time domain to features in frequency domain. The process 

may cause loss of important information related to damage dynamics; this disadvantage could 

be avoided by directly using time response data for damage detection. Another advantage of 

using time domain features is that non-linearity responses raised by damage in a structure 

could be preserved further facilitating diagnostics. 

      Cattarius and Inman (1997) proposed a time-domain approach by taking the advantage of 

beating phenomenon to detect small damage that many be unnoticeable in natural frequency 

changes. Carneiro and Inman (2000) investigated the detection of a surface crack on a 

Timoshenko beam in time domain with the aid of an analytical model developed by the 

authors. A bilinear model of a closing crack is also considered. While the minimum rank 

perturbation theory (MRPT) has been extensively investigated in frequency domain by 

Zimmerman and his co-workers (1994) for damage detection. 

 

2-5-Based on Wave Propagation 

As one class of the widely used approaches, wave propagation methods adopt a transmitter 

and a receiver to send a diagnostic stress wave along the structure and measure the changes in 

the received signal due to the presence of damage in the structure. This approach is a natural 

extension is very effective in detecting damage in the form of geometrical discontinuities. In a 

paper by Van Den Abeele et al. (2001) micro-scale damage in a micro-inhomogeneous 

material were detected by means of nonlinear elastic wave spectroscopy. It is shown that 

distortion in acoustic and ultrasonic waves with nonlinear features can be used to detect 

cracks and flaws more reliably than linear acoustical methods (measures of wave speed and 

dissipation).  
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3. Finite Element Discritization 

3.1. General. 

At present, the finite element method is the most powerful numerical technique, which offers 

approximate solution to realistic types of structures such as wings. In the present study, the 

20-node structural 3-dimensional solid element is used for discritization of the wing model 

3.2 Element Parameters. 

Solid186 is used for the 3-D modeling of solid structure. The element is defined by 20 nodes 

having three degrees of freedom per node: translations in the nodal x, y, and z directions. 

SOLID186 may have any spatial orientation. The coordinate system for this element is shown 

in Figure (1) (Ansys Element Manual, 2004). 

 

 

 

 

 

 

 

 

 

 

 

3.3. Wing Geometry and Mesh Generation. 

Figure (2) shows the proposed model (wing), all dimensions of the wing are listed in Table 1 

below. The wing was discretized using solid element (solid186). ANSYS 9.0 finite element 

program was used as a mathematical tool in the analysis of this model. Where, Figure (3) 

shows the finite element representation of the wing structure. It must be noted that, the 

number of the elements at the crack location must be enough in its number to give 

concentrated results of high accuracy; due to the dramatic changes that occurs at regions of 

the crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3): Mesh generation of the wing model. Fig (2): Wing configuration. 

 

crack location 

Fig(1): Element geometry. 
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Table 1 :   Proposed dimensions of the wing. 

 

 

3.4. Finite element formulation  
The basic concept of the finite elements method is to discretize the continuum into arbitrary 

numbers of small elements connected together at their common nodes. The stress–strain 

relations in coordinates aligned with principal material directions are given by: 

 

               E                                                                                                                …(1)  

For a finite element (e), of the discrete model, the displacement vector at any point is: 

 

{u}
e
 = [N] {a}

e
                                                                                                                 …(2)  

Where [N] is a matrix containing the interpolation functions which relate the element 

displacement {u}
e
 to the nodal displacements {a}

e
. By differentiation of the displacements, the 

corresponding strains { }
e
 are obtained such that: 

{ }
e
 = [A] {u}

e
                                                                                                      …(3) 

Where [A] is the differential operators matrix. 

The substitution of Equation (2) into Equation (3) yields: 

{ }
e
 = [A] [N] {a}

e
                                                                                       …(4) 

 or                                                  

{ }
e
 = [B] {a}

e
                                                                                              …(5) 

                                                  

     Also, the total solution domain is discretized into a number of elements (NE) [sub–

domain] such that: 





NE

e

e aa
1

)()(                                    …(6) 

                                               

Where  and 
e
 are the potential energy of the total solution domain and the sub–domain, 

respectively. The potential energy for an element, e, can be expressed in terms of the 

internal strain energy, SE, and external work done, WF, such that: 

 

   
e
 (a) = SE – WF                                                                       …(7) 

                                                   

in which (a) is the vector of nodal degrees of freedom of an element.  

The internal strain energy of an elastic body is given by: 



A

TSE dA  
2

1
                                                                       …(8)

                                        

wing length (L) wing width (b) maximum wing 

height(t) 
crack location (l) crack width (a) crack inclination 

angle (α) 
100cm 20cm 1.5 cm variable variable variable 
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then: 

        
A

TeT
adAaSE     B B

2

1
E                                                                      …(9) 

                                      
The external work done by uniformly distributed load is given by: 

    dAPaW

A

f                                                                            …(10) 

                                                    
But, the displacement vector {a} can also be defined as: 

eaNa }]{[}{                                                                                    …(11) 

                                        
Also 

     dA P
T 


A

Te
f NaW                                               …(12) 

                 dA  P a     B B a 
2

1
a  

TT 

AA

T 
NadA

eeTee

  E                               …(13) 

                         
To obtain the Equilibrium State of the plate element, the potential energy must be 

minimized with respect to nodal displacements as follows: 

}0{}{ 



ea


                                                   …(14) 

By substitution of Equation (13) in Equation (14) and carrying out the partial 

differentiation, then: 

            0dA  P      B B}{ T 




A

e

A

T

e
NadA

a
E


                                                   …(15) 

or 

}0{][}{][  eee Fak                                                 …(16) 

where,  

  
 


A

TTe ddJdAk

1

1

1

1

  ]B][[]B[ ]B][[]B[][ EE                                                          …(17) 

           d d J PNdA  PN F

1

1-

1

1-

TT

A

e
                                                …(18) 

in which,  

[K]
e
: is the element stiffness matrix,  

[F]
e
: is the element external applied force vector, 

  J  : is the determinant of the Jacobian matrix. 

In general, it is not possible to evaluate the element stiffness matrix explicitly. Thus, 

numerical integration has to be used based on Gauss– quadrature rules, and the selective 

integration (Zienkiewicz et al ,2000). 
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3.5. Formulation of Element Mass Matrix 

When the shape functions used for the derivation of the mass matrix are identical to those 

used in formulating the element stiffness matrix; matrix [M] is called the consistent mass 

matrix.  

To derive the consistent mass matrix, one can consider the kinetic energy of the total 

solution domain discretized into number of elements (NE) such that: 





NE

e

e aTIaTI
1

)()(                                                             …(19) 

where TI and TI
e
 are the kinetic energy of the total solution domain and the sub–domain 

respectively. The kinetic energy of the element (e) can be expressed as follows: 



A

Te dAamaTI }]{[}{
2

1
                                                 …(20) 

The velocity vector within an element is discretized such that: 





NN

i

ii aNa
1

}{}{  ,      NN (number of nodes)                                                                      …(21) 

By substituting Equation (21) into Equation (20), and rearrange it into matrix form: 

 

A

eTTTe aMaadANmNaTI }{][}{
2

1
}{]][[][}{

2

1
                                                          …(22) 

thus,  

  
 



A

TTe ddJNmNdANmNM

1

1

1

1

   ]][[][]][[][][                                               …(23) 

Where 

[N] = [N1, N2, N3… Nnn]                                                                                                    …(24) 

 

3.6. Modal Analysis 

In the dynamic analysis, the natural frequency, , of the vibration is important to give an idea 

about the oscillation of the system with time, and to determine the natural period (T) of the 

vibration which represents the time for which the vibration repeats itself, as: 

 

 T = 2 /                                                                                                                           …(25) 

To determine the natural frequencies of a structure, a free vibration 

0}]{[}]{[ 


XKXM                                                                                                 …(26) 

         Assuming harmonic motion which yields to: 

02  T
iii }{ }{ ])M[]K([                                                                                   …(27) 

 

        Equation (27) has the form of the algebraic eigenvalue problem (K=M). From the 

theory of homogeneous equations, nontrivial solutions exist only if the determinant of the 

coefficient matrix is equal to zero. Thus: 
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0][][ 2  MK i                                                                                                            …(28) 

      Expansion of the determinant yields a polynomial of order n called characteristic 

equation. The n roots of this polynomial (i
2
 ) are the characteristic values or the eigenvalues. 

3.7. Results and Discussion 

3.7.1 Natural Frequency  

Figure (4) presents the mode shapes and corresponding natural frequencies for the wing 

structure without crack. As shown, the first mode shape present the minor bending mode in x-

y plane of natural frequency equal to (9.1899Hz), the second present the major bending mode 

in x-y plane of natural frequency (57.035 Hz). Pure torsion is address of the third mode of 

natural frequency (109.3 Hz). The fourth mode is purely bending in x-z plane of (131.02 Hz). 

At last, the fifth mode is complex bending in x-y plane of (157.966 Hz). 

 

 

 

 

 

 

 

 

 

 
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a):Sub=1, 1
st

 Mode (b): Sub=2, 2
nd

 Mode 

(c): Sub=3, 3
rd

 Mode (d): Sub=4, 4
th

 Mode 

(e): Sub=5, 5
th

 Mode 

Fig (4): Mode shapes of wing without crack.  
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        Table 2 list the natural frequencies of a cracked wing with different crack ratios which 

started from 0.1 to 0.9 at a dimensionless crack location (l/L) equal to 0.3. Table 3 shows the 

change in the natural frequencies with different crack locations using crack ratio (a/b) equal to 

0.5. 
 
 

Table (2):Natural frequency at different crack ratios (η=a/b), ζ =l/L =0.3 
 

modes η=0.1 η=0.2 η=0.3 η=0.4 η=0.5 η=0.6 η=0.7 η=0.8 η=0.9 

first 9.186 9.184 9.184 9.179 9.165 9.141 9.081 8.965 8.636 

second 57.013 56.979 56.949 56.939 56.901 56.839 56.64 56.28 32.137 

third 109.232 108.904 109.096 109.01 108.625 100.7 84.293 62.063 55.385 

fourth 130.783 129.557 126.124 120.675 112.494 108.28 107.158 104.799 98.783 

fifth 157.648 157.059 157.191 157.104 156.89 156.33 155.022 152.831 147.706 

 

 
Table (3): Natural frequency at different crack location (ζ=l/L), η=a/b=0.5 

modes ζ =0.1 ζ =0.2 ζ =0.3 ζ =0.4 ζ =0.5 ζ =0.6 ζ =0.7 ζ =0.8 ζ =0.9 

first 9.132 9.158 9.165 9.173 9.178 9.182 9.183 9.184 9.189 

second 56.749 56.938 56.897 56.817 56.766 56.773 56.843 56.883 56.96 

third 99.48 105.704 108.62 108.84 108.71 108.83 108.72 108.795 109.19 

fourth 107.96 108.962 112.47 118.64 123.77 127.49 129.71 130.701 131.01 

fifth 156.55 157.21 156.87 156.71 156.72 156.65 156.65 156.597 157.14 

 

        It was noted that the natural frequency in the case of wing with crack has a smaller 

values than the one without crack [Tables (2, 3) and Figure 4], because the presence of the 

crack have a significant effect on the stiffness (local flexibility) of the structure. In other 

words, the crack reduces the number of connected element points which reduce the number of 

the doubled point of the stiffness matrix, thereby reduce the stiffness of the element. As a 

result, a decreasing in the stiffness will reduce the corresponding natural frequency based on 

the direct relationship between them. As shown in table (2), it is noted that for the case of 

constant crack location, changes in natural frequency depend on the changes in the crack 

length which is surely due to the changing of the overall stiffness of the wing at each crack 

length. 

       It was supposed that for each mode, the value of natural frequency decreases gradually 

with increasing in the crack length (due to the increasing in the unconnected point). This 

agrees with first and fifth mode shapes and some what in the second mode shape, where 

dramatic changes happen at crack ratio equal to 0.9, but don't agree with the third mode shape 

in which the natural frequency decreases dramatically with the increase of the crack ratio that 

started form 0.5.  

        In other words, mode transform or mode exchange effect which mean that there are 

transformations and coupling between the modes; as example at η=0.9 the second mode 

(bending in x-y plane) becomes bending mode in the x-z plane as depicted in Figure (5). 

While the fourth mode (bending in x-z plane) is transformed to become torsion mode after 

η=0.5 and vice versa as shown in Figure (6). As well as, it is very clear that the fourth mode 

(bending in x-z plane) is more sensitive to the crack length than the other modes, because this 

vibrating mode tends to open the crack. 

       Table (3) presents the changes in the natural frequency at different crack locations and 

constant crack ratio. Like Table (2), there are interactions and transformation between the 

mode shapes. As example, the value of the natural frequency in the fourth mode at ζ=0.2 is 

transformed to the third mode at ζ=0.3. The alternative decreasing and increasing in the 



 11 

natural frequency makes the frequency method ineffective in the study of the effect of the 

crack location on the structure response. On the other hand, in the tables mentioned above, the 

changes in the natural frequencies are small compared with the big changes in crack ratio and 

its location, respectively. Tables (2) and (3) were also graphed in normalized form to explain 

and study the information clearly. 

       Figure (7), shows that the changes of the normalized natural frequency (the natural 

frequency with crack divided by the natural frequency without crack of the same mode) of the 

first and fifth modes was very small as compared to the second, third, and fourth modes. The 

fourth mode was affected at crack ratio started from 0.2 in which the change is smaller than 

that corresponding to the third and second modes were the change is started from crack ratio 

of 0.5 and 0.8 respectively.  

        In Figure (8) which presents the relation between the normalized natural frequency and 

crack location. The changes in the natural frequency in the first, second, and fifth modes were 

simple and smaller than the corresponding in the third and fourth modes. The maximum 

change in the natural frequency occurs in the fourth mode due to the reduction in the stiffness 

in the horizontal plane (x-z plane) that is largely affected by crack presence.  

        It is important to refer that the changing in the natural frequency due to the change in the 

crack location and crack ratio doesn’t give any useful information about the crack presence, 

location, and its length. Thus, it is not recommended to depend on the natural frequency 

changes to test the cracked structure because there information is not valuable. This result 

agreed with (Wang, K.2004) who reminded that “As the global nature of a structure, natural 

frequencies may not be sensitive to the local incipient damage. Where some situations such as 

damage detection on bridges and buildings, changes in environmental conditions (e.g., climate 

changes) even in a single day could affect natural frequencies more than the possible damage 

by changing mass and stiffness of the structure”. 

       Figure (9) presents the effect of the crack inclination angle on the natural frequency. It 

was noted that the changes in natural frequency of the first mode is less than the 

corresponding frequencies of the second, third, and fifth modes, respectively. As well as, the 

fourth mode was largely affected by the inclination angle. It is important to refer that the 

maximum effect occurs at an inclination angle of 90˚ (the crack is normal on the wing axis).    

        

3.7.2 Mode Shapes        

3.7.2.1 Line of crack perpendicular on the wing axis. 

Figure (10) represents the torsional mode shapes at different wing crack ratios. This figure 

shows the simplicity in detecting the crack location and its size along the wing length which is 

represented by a vertical line in each curve(discontinuity in mode shape). The length of the 

vertical line is direct proportional with the crack ratio (an increasing in the crack ratio leads to 

increase in the length of the vertical line).  Figure (11) presents the bending mode shapes with 

different crack ratios in which the crack ratio was not clearly affect the general dynamic 

behavior. 

 

       Figure (12) presents the torsional mode shape at different crack locations with constant 

crack ratio η=0.5. It is important to note that there was a sudden jump in each crack location 

(the vertical line). This jump is largest when the crack location is closest to the root of the 

wing and decreases gradually when it converged to the wing's tip (converse proportional). The 

main reason is that the maximum torsional moment in the wing structure occurs at a distance 

between (0.1- 0.15) from the wing length (highly stressed regions) and decreasing after that 

(Waheed. S. O, 2006). The jump in the torsional mode is more obvious than the bending 
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mode as depicted in Figures (12, 13). However, the deflected shape and its jump at each crack 

location may still valuable for detecting the crack location and its length when both bending 

and torsional modes are taken into consideration. 

 

3.7.2.2 Inclined crack with angle α    
Figures (14, 15) presented the torsional and bending mode shapes at different crack 

inclination angles. The crack ratio and crack length are constants that equal to 0.5. The 

general behaviors in the figures are the same as in case of perpendicular crack. It was noted 

that the two modes doesn’t largely affected by the changing in the inclination angle. Although 

that the value of crack location of 0.5 (the discontinuity must appear at this location exactly), 

there is little shifting of the discontinuity closest to the crack. Anyway this is not a great 

problem but it may mislead the observer to detect the crack location exactlly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig (5): Transforms between modes at (η=0.9), ζ =l/L =0.3  
   (a) The fourth mode to the second ,(b) second to the third. 

 

(a) (b) 

      Fig (6): Transforms between modes at (η=0.6), ζ =l/L =0.3  

      (a) The fourth mode to the third ,(b) the third to the fourth. 

(a) (b) 
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Fig (8): Normalized natural frequency  
at different crack locations 
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Fig (7): Normalized natural frequency  
at different crack ratios 
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Fig (9): Normalized natural frequency  
at different crack inclination angles. 
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Fig (10): Torsional mode shape  
at different crack ratios, ζ=0.3. 
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Fig (11): Bending mode shape  

at different crack ratios, ζ=0.3. 
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Fig (12): Torsional mode shape 

at different crack locations, η =0.5. 
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